Conditional Accelerated Lazy Stochastic Gradient Descent

نویسندگان

  • Guanghui Lan
  • Sebastian Pokutta
  • Yi Zhou
  • Daniel Zink
چکیده

In this work we introduce a conditional accelerated lazy stochastic gradient descent algorithm with optimal number of calls to a stochastic first-order oracle and convergence rate O( 1 ε2 ) improving over the projection-free, Online Frank-Wolfe based stochastic gradient descent of Hazan and Kale [2012] with convergence rate O( 1 ε4 ).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lazy Sparse Stochastic Gradient Descent for Regularized Mutlinomial Logistic Regression

Stochastic gradient descent efficiently estimates maximum likelihood logistic regression coefficients from sparse input data. Regularization with respect to a prior coefficient distribution destroys the sparsity of the gradient evaluated at a single example. Sparsity is restored by lazily shrinking a coefficient along the cumulative gradient of the prior just before the coefficient is needed. 1...

متن کامل

Hyphenation with Conditional Random Field

In this project, we approach the problem of English-word hyphenation using a linear-chain conditional random field model. We measure the effectiveness of different feature combinations and two different learning methods: Collins perceptron and stochastic gradient following. We achieve the accuracy rate of 77.95% using stochastic gradient descent.

متن کامل

Stochastic Proximal Gradient Descent with Acceleration Techniques

Proximal gradient descent (PGD) and stochastic proximal gradient descent (SPGD) are popular methods for solving regularized risk minimization problems in machine learning and statistics. In this paper, we propose and analyze an accelerated variant of these methods in the mini-batch setting. This method incorporates two acceleration techniques: one is Nesterov’s acceleration method, and the othe...

متن کامل

Accelerating Stochastic Gradient Descent

There is widespread sentiment that fast gradient methods (e.g. Nesterov’s acceleration, conjugate gradient, heavy ball) are not effective for the purposes of stochastic optimization due to their instability and error accumulation. Numerous works have attempted to quantify these instabilities in the face of either statistical or non-statistical errors (Paige, 1971; Proakis, 1974; Polyak, 1987; G...

متن کامل

Improved Stochastic gradient descent algorithm for SVM

In order to improve the efficiency and classification ability of Support vector machines (SVM) based on stochastic gradient descent algorithm, three algorithms of improved stochastic gradient descent (SGD) are used to solve support vector machine, which are Momentum, Nesterov accelerated gradient (NAG), RMSprop. The experimental results show that the algorithm based on RMSprop for solving the l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017